The effect of Nafion content in a graphitized carbon nanofiber-based anode for the direct methanol fuel cell

نویسندگان

  • Petri Kanninen
  • Maryam Borghei
  • Virginia Ruiz
  • Esko I. Kauppinen
  • Tanja Kallio
چکیده

The performance and stability of a direct methanol fuel cell (DMFC) with membrane electrode assemblies (MEA) using different Nafion contents (30, 50 and 70 wt % or MEA30, MEA50 and MEA70, respectively) and graphitized carbon nanofiber (GNF) supported PtRu catalyst at the anode was investigated by a constant current measurement of 9 days (230 h) in a DMFC and characterization with various techniques before and after this measurement. Of the pristine MEAs, MEA50 reached the highest power and current densities. During the 9-day measurement at a constant current, the performance of MEA30 decreased the most (-124 μV h), while the MEA50 was almost stable (-11 μV h) and performance of MEA70 improved (+115 μV h). After the measurement, the MEA50 remained the best MEA in terms of performance. The optimum anode Nafion content for commercial Vulcan carbon black supported PtRu catalysts is between 20 and 40 wt %, so the GNF-supported catalyst requires more Nafion to reach its peak power. This difference is explained by the tubular geometry of the catalyst support, which requires more Nafion to form a penetrating proton conductive network than the spherical Vulcan. Mass transfer limitations are mitigated by the porous 3D structure of the GNF catalyst layer and possible changes in the compact Nafion filled catalyst layers during constant current production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modified CNTs/Nafion composite: The role of sulfonate groups on the performance of prepared proton exchange methanol fuel cell’s membrane

A novel Nafion®-based nanocomposite membrane was synthesized to be applied as direct methanol fuel cells (DMFCs). Carbon nanotubes (CNTs) were coated with a layer of silica and then reacted by chlorosulfonic acid to produce sulfonate-functionalized silicon dioxide coated carbon nanotubes (CNT@SiO2-SO3H). The functionalized CNTs were then introduced to Nafion®, and subsequently, methanol permeab...

متن کامل

Methanol crossover and selectivity of nafion/heteropolyacid/montmorillonite nanocomposite proton exchange membranes for DMFC applications

In this work, we prepared the nafion/montmorillonite/heteropolyacid nanocomposite membranes for direct methanol fuel cells (DMFCs). The analyses such as X-ray diffraction (XRD), Fourier transform infrared (FTIR), and scanning electron microscopy (SEM) were conducted to characterize the filler dispersion and membrane structure in prepared nanocomposite membranes. XRD patterns of nafion-CsPW-MMT ...

متن کامل

Platinum Nanoparticles Deposited on Oxygen-Containing Functional Groups at Carbon Vulcane XC-72 as a Cathode Catalyst for Direct Methanol Fuel Cell

Surface oxidized carbon vulcane XC-72 is prepared as catalyst support and platinumnanoparticles are chemically anchored onto the modified surface. The nanoparticles of Pt weresynthesized by reduction of H2PtCl6 with sodium borohydride in a 5.5 M buffer solution ofsodium citrate; the complexation of citrate with metal ions is beneficial to the formation ofnanoparticles. The electro-oxidation of ...

متن کامل

Pt-Ru supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells.

Pt-Ru supported on carbon nanotubes (CNTs) (single-walled nanotubes, double-walled nanotubes (DWNTs), and multi-walled nanotubes) catalysts are prepared by an ethylene glycol reduction method. Pt-Ru nanoparticles with a diameter of 2-3 nm and narrow particle size distributions are uniformly deposited onto the CNTs. A simple and fast filtration method followed by a hot-press film transfer is emp...

متن کامل

Preparation and Characterization of Electrocatalyst Nanoparticles for Direct Methanol Fuel Cell Applications Using β-D-glucose as Protection Agent

In this study, the activity, stability and performance of carbon supported platinum (Pt/C) electrocatalyst in cathode and carbon supported Pt and ruthenium (PtRu/C) electrocatalyst in anode of direct methanol fuel cell (DMFC) were studied. The Pt/C and PtRu/C electrocatalysts were prepared by impregnation reduction method. The β-D-glucose was used as protection agent to reduce the particle size...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014